Интернет. Программы. Игры. Операционные системы. Антивирусы

Что изучает акустика. Акустика

Как мы слышим? Какова скорость звука? Как он распространяется? На все эти вопросы отвечает отдельная наука о природе звука - акустика.

Что такое акустика

Определение

Акустика - наука о физической природе звука.

Но что такое звук? Звук - механические колебания, распространяющиеся в виде упругой волны в жидкой, твердой или газообразной среде.

Звуковые волны, в зависимости от их спектра, делятся на шумы и музыкальные звуки.

Традиционно, звуком называют колебания определенной частоты, воспринимаемые слухом человека. Диапазон частот колебаний, которое воспринимает ухо: от 20 до 20000 Герц. Данное деление условно и границы диапазона не являются четкими, все зависит также от индивидуальных особенностей слуха каждого человека. Речь и большинство звуков, которые мы слышим, лежат в пределах около 4000-5000 Герц.

Ниже границы в 20 Герц лежит область инфразвука, а выше верхней границы слышимого диапазона - область ультразвука.

Частота ϑ связана с длиной волны λ соотношением λ = V ϑ , где V - скорость распространения звука в среде.

Помимо частоты и длины волны звук характеризуется громкостью. Громкость (уровень звукового давления) измеряется в децибелах.

Определение

Децибел - логарифмическая единица измерения громкости звука, одна десятая часть белла.

1 D b = 20 l g p 20 м к П а, где p - измеренное звуковое давление, 20 мкПа - минимальное звуковое давление, при котором человек слышит звук.

Современные направления акустики

Акустика изучает вопросы распространения звуковых волн в различных средах и прикладные проблемы, связанные с этим. Исследования в области акустики проводились еще в глубокой древности. Доказательством тому служит факт построения античных амфитеатров таким образом, чтобы зрители даже на высоких трибунах могли слышать речь актеров.

В настоящее время акустика разделяется на множество направлений, таких как:

    физическая акустика;

    психоакустика;

    музыкальная акустика;

    электроакустика;

    медицинская акустика;

    биоакустика;

    физиологическая акустика;

    гидроакустика.

Пример

Летучие мыши и дельфины испускают сигналы с частотой соответственно 100 кГц и 1 МГц. Найдите частоту этих звуков.

Длина волны вычисляется по формуле λ = V ϑ , где V - скорость распространения звука в среде. В воздухе V = 343 м с, в воде V = 1531 м с.

Для летучих мышей:

λ = V ϑ = 343 10 5 = 3 , 43 м м

Для дельфинов:

λ = V ϑ = 1531 10 6 = 1 , 5 м м

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Акустика – наука, изучающая физическую природу звуковых волн и вопросы, связанные с возникновение распространением и восприятием звуковых волн. Акустика как наука, с одной стороны является одним из направлений физики (точнее – механики), которое занимается вопросами создания и распространения механических колебаний, с другой стороны тесно связана с психологией человека (восприятие звука человеком).

Звуковая волна в газах является продольной (колебания происходят в направлении, параллельном распространении волны).

Звуковая волна представляет собой области сгущения и разрежения молекул воздуха.

Разность между мгновенным значением давления в данной точке среды и атмосферным давлением называют звуковым давлением: Pзв = Pмгн - Pатм.
Звуковое давление – величина знакопеременная.

Звуковое давление измеряется в паскалях (Па): 1 Па = 1 Н/кв.м. Слуховая система человека способна определить огромный диапазон разностей между мгновенным значением звукового давления и атмосферным.

Слуховая система человека может оценивать звуковое давление в пределах от 0,00 002 Па до 20 Па. Разница между самым тихим (0,00 002 Па) и самым громким (20 Па) составляет 1 000 000. Использовать при измерениях такую большую шкалу неудобно, поэтому используется логарифмическая шкала, которая обеспечивает “сжатие” масштаба изменения давления. Для этого используется понятие “уровень звукового давления” (правая колонка таблицы): L = 20 lg P/Po, где Po=0,00 002 Па. Уровень звукового давления измеряется в дБ.

Если звуковое давление P = 2 Па, то
L = 20 lg P/Po = 20 lg (2/0,00 002) = 20 lg 100 000 = 20 x 5 =100 дБ


Если уровень звукового давления L = 80 дБ, то
80 = 20 lg (P/0,00 002); lg (P/0,00 002) = 4; P/0,00 002 = 10 000; P = 0,2 Па
Увеличение звукового давления в 2 раза соответствует изменению уровню звукового давления на 6 дБ
Звуковому давлению 2 Па, соответствует уровень звукового давления 100 дБ
Звуковому давлению 1 Па, соответствует уровень звукового давления 94 дБ
Звуковому давлению 4 Па, соответствует уровень звукового давления 106 дБ
Уровни звукового давления нескольких различных источников никогда не складываются. Для определения суммарного звукового давления необходимо рассчитать давления, соответствующие каждому уровню: P1 и P2. Определить суммарное звуковое давление равное корню квадратному из суммы квадратов, и далее рассчитать уровень звукового давления.

Отражения и поглощение

Когда звуковая волна достигает границы раздела среды, в которой она распространяется (в помещении границами являются потолок, пол, стены), происходят следующие процессы;

  • часть звуковой энергии поглощается
  • часть звуковой энергии отражается, угол падения равен углу отражения
  • часть звуковой энергии проходит через границу раздела

Для описания процессов вводят коэффициенты:
коэффициент поглощения альфа = Iотраж/Iпад
коэффициент отражения бетта = Iпогл/Iпад
коэффициент прохождения гамма = Iпрош/Iпад

Коэффициенты бетта и гамма - величины безразмерные, для коэффициента поглощения альфа используют размерность “сэбин”. (Коэффициент поглащения в 1 сэбин равен поглощению звука открытым окном площадью 1 кв.м.

Распространение звука

В помещении всегда присутствуют прямые и отраженные звуковые волны. Прямой звук – звук, который распространяется от источника до приемника. Отраженный звук – звук, который идет по траектории источник-отражающая поверхность-приемник. На рисунке видно, что прямой и отраженный звуки преодолевают различные расстояния, прежде чем достигнут приемника. Кроме того, отраженный звук может претерпевать несколько отражений от различных поверхностей, прежде чем достигнет приёмника. Различают:

  • прямой звук (источник -> приемник),
  • первое отражение (источник -> отражающая поверхность-приемник),
  • второе отражение (источник -> отражающая поверхность №1 -> отражающая поверхность №2 -> приемник).

Скорость распространения звуковых волн в воздушной среде при нормальных условия составляет ~ 340 м/сек.

Звуковые волны расходятся от источника, отражаются от различных поверхностей, затем снова попадают на эти поверхности и снова отражаются, взаимодействуя с предыдущими отражениями. Прежде чем достигнуть приемника (попасть в ухо) энергия звуковых волн в течение некоторого времени, от полусекунды для небольших комнат до нескольких секунд в больших аудиториях, будет циркулировать по помещению, отражаясь от всевозможных поверхностей. Отражения смешиваются, возникают конструктивные и деструктивные эффекты интерференции, различные для каждой точки помещения. Число отражений звуковых волн в любых практически важных случаях по существу бесконечно.

Акустика помещений определяется всего тремя факторами:

  • временными параметрами отражений,
  • относительной силой отражений
  • распределением силы отражений по частотному спектру.

Звук - это феномен, волновавший человеческие умы с глубокой древности. Фактически мир разнообразных звуков возник на Земле задолго до появления на ней человеческих существ. Первые звуки раздавались ещё во время зарождения нашей планеты. Они были вызваны мощнейшими ударами, колебаниями материи и бурлением раскалённого вещества.

Звук в природной среде

Когда на планете появились первые животные, у них со временем возникла острая потребность получать как можно больше информации об окружающей действительности. А поскольку звук является одним из главных носителей информации, то у представителей фауны стали происходить эволюционные изменения головного мозга, которые постепенно привели к образованию органов слуха.

Теперь первобытные животные могли получать посредством улавливания звуковых колебаний необходимую информацию об опасности, часто исходящей от невидимых взору объектов. Позднее живые существа научились использовать звуки для других целей. Сфера применения аудиоинформации росла в процессе эволюции самих животных. Звуковые сигналы стали служить средством примитивного общения между ними. Звуками они стали предупреждать друг друга об опасности, также он служил зовом к объединению для существ со стадными инстинктами.

Человек - повелитель звуков

Но лишь человеку удалось научиться в полной мере использовать звук в своих целях. В один прекрасный момент люди столкнулись с необходимостью передачи знаний друг другу и из поколения в поколение. Этим целям человек подчинил многообразие звуков, которые научился со временем издавать и воспринимать. Из этого множества звуков впоследствии возникла речь. Звук стал также наполнением досуга. Люди открыли для себя благозвучность свиста спускаемой тетивы лука, энергичность ритмичных ударов деревянных предметов друг о друга. Так возникли первые, самые простые музыкальные инструменты, а значит, и само музыкальное искусство.

Однако человеческое общение и музыка - не единственные звуки, которые появились на Земле с возникновением людей. Звуками сопровождались и многочисленные трудовые процессы: изготовление различных предметов из камня и дерева. А с появлением цивилизации, с изобретением колеса люди в первый раз столкнулись с проблемой громкого шума. Известно, что уже в древнем мире стук колёс о дороги, вымощенные камнем, нередко становился причиной плохого сна у жителей придорожных домов. В борьбе с этим шумом было изобретено первое средство шумоподавления: на мостовую настилалась солома.

Нарастающая проблема шума

Когда человечество познало пользу железа, проблема шума начала приобретать глобальные масштабы. Изобретя порох, человек создал тем самым источник звука такой мощности, которая достаточна для причинения заметного ущерба его собственному слуховому аппарату. В эпоху промышленной революции среди таких негативных побочных явлений, как загрязнение окружающей среды, истощение природных ресурсов, не последнее место занимает проблема промышленного шума высокой громкости.

Анекдот из жизни

Тем не менее даже в настоящее время не все производители промышленной техники уделяют хоть какое-то внимание данному вопросу. Руководство далеко не всех заводов и фабрик озабочено сохранением здорового слуха у своих подчинённых.

Иногда приходится слышать рассказы, подобные этому. Главный инженер одного из крупных предприятий промышленности распорядился установить в наиболее шумных цехах микрофоны, подсоединённые к громкоговорителям, расположенным снаружи зданий. По его мнению, таким образом микрофоны будут высасывать часть шума наружу. Конечно, при всей комичности данной истории она заставляет задуматься о причинах такой безграмотности в вопросах, касающихся шумоподавления и шумоизоляции. А причина у этого единственная - в учебных заведениях высшего, средне-профессионального и средне-специального уровня образования лишь в последние десятилетия стали вводить специальные курсы по акустике.

Наука о звуке

Первые попытки познания природы звука были предприняты ещё Пифагором, который изучал колебания струны. После Пифагора в течение долгих веков эта область не вызывала никакого интереса у исследователей. Конечно, целый ряд учёных древности занимался построением собственных акустических теорий, но эти научные изыскания не основывались на математических расчётах, а были больше похожи на разрозненные философские рассуждения.

И лишь по прошествии более чем тысячи лет Галилей положил начало новой науке о звуке - акустике. Виднейшими первопроходцами в этой сфере были Рэлей и Гельмгольц. Они создали в девятнадцатом веке теоретическую основу современной акустики. Герман Гельмгольц в основном знаменит своим изучением свойств резонаторов, а Релей стал нобелевским лауреатом благодаря своей фундаментальной работе по теории звука.

Основные направления современной акустики

Многочисленные научные труды по исследованию природы шума и вопросам шумоподавления и шумоизоляции были опубликованы некоторое время спустя. Первые работы в этой области касались в основном шумов, производимых авиационной техникой и наземных транспортом. Но со временем границы этих исследований значительно расширились. На данный момент большинство промышленно-развитых стран имеют свои научно-исследовательские институты, занимающиеся разработкой решения данных проблем.

На сегодняшний день наиболее известны следующие разделы акустики: общая, геометрическая, архитектурная, строительная, психологическая, музыкальная, биологическая, электрическая, авиационная, транспортная, медицинская, ультразвуковая, квантовая, речевая, цифровая. В следующих главах будут рассмотрены некоторые из перечисленных разделов науки о звуке.

Общие положения

Прежде всего, следует дать определение науке, о которой идёт речь в данной статье. Акустика - это область знания о природе звука. Данная наука изучает такие явления, как возникновение, распространение, ощущение звука и различные эффекты, производимые звуком на органы слуха. Как и все прочие науки, акустика имеет свой понятийный аппарат.

Акустика - это наука, считающаяся одной из отраслей физической науки. Вместе с тем она также является междисциплинарной отраслью, то есть имеет тесные связи с другими областями знаний. Наиболее отчётливо прослеживается взаимодействие акустики с механикой, архитектурой, теорией музыки, психологией, электроникой, математикой. Важнейшие формулы акустики касаются свойств распространения звуковых волн в условиях упругой среды: уравнения плоской и стоячей волн, формулы расчёта скорости волн.

Применение в музыке

Музыкальная акустика - отрасль, исследующая музыкальные звуки с точки зрения физики. Данная отрасль тоже является междисциплинарной. В научных трудах по музыкальной акустике активно используются достижения математической науки, музыкальной теории и психологии. Основные понятия этой науки: звуковысотность, динамические и тембральные оттенки используемых в музыке звуков. Данный раздел акустики преимущественно направлен на исследование ощущений, возникающих при восприятии звуков человеком, а также особенностей музыкального интонирования (воспроизведения звуков определённой высоты). Одной из обширнейших тем исследования музыкальной акустики является тема музыкальных инструментов.

Применение на практике

Учёные, занимающиеся теорией музыки, применяли результаты исследований музыкальной акустики для построения концепций музыки на базе естественных наук. Физики и психологи занимались вопросами музыкального восприятия. Отечественные учёные, трудившиеся на этом поприще, работали как над разработкой теоретической базы (Н. Гарбузов известен своей теорией о зонах музыкального восприятия), так и над применением достижений на практике (Л. Термен, А. Володин, Е. Мурзин занимались конструированием электромузыкальных инструментов).

В последние годы всё чаще стали появляться междисциплинарные научные работы, в которых комплексно рассматривается особенность акустики зданий, относящихся к различным архитектурным стилям и эпохам. Данные, полученные при исследованиях в данной сфере, используются при построении методик развития музыкального слуха и техник настройки музыкальных инструментов. Следовательно, можно сделать вывод, что музыкальная акустика - отрасль науки, которая не потеряла своей актуальности на сегодняшний день.

Ультразвук

Далеко не все звуки могут быть восприняты человеческими органами слуха. Ультразвуковая акустика - раздел акустики, изучающий звуковые колебания с диапазоном от двадцати кГц. Звуки такой частоты находятся за гранью человеческого восприятия. Ультразвук подразделяется на три вида: низкочастотный, среднечастотный, высокочастотный. Каждый из видов имеет свою специфику воспроизведения и практического применения. Ультразвуки могут быть созданы не только искусственно. Они нередко встречаются и в живой природе. Так, шум, издаваемый ветром, частично состоит из ультразвука. Также такие звуки воспроизводятся некоторыми животными и улавливаются их органами слуха. Всем известно, что летучая мышь является одним из таких существ.

Ультразвуковая акустика - это отрасль акустики, которая нашла практическое применение в медицине, при различных научных опытах и исследованиях, в военной промышленности. В частности, в начале двадцатого века в России было изобретено устройство для обнаружения подводных айсбергов. Работа этого устройства основывалась на генерации и улавливании ультразвуковых волн. Из данного примера видно, что ультразвуковая акустика - это наука, достижения которой используются на практике уже более ста лет.

Акустика - область физики, исследующая упругие колебания и волны от самых низких частот до предельно высоких (10 12 -10 13 Гц). Современная акустика охватывает широкий круг вопросов, в ней выделяют ряд разделов: физическая акустика, которая изучает особенности распространения упругих волн в различных средах, физиологическая акустика, изучающая устройство и работу звуковоспринимающих и звукообразующих органов у человека и животных, и др. В узком смысле слова под акустикой понимают учение о звуке, т.е. об упругих колебаниях и волнах в газах, жидкостях и твердых телах, воспринимаемых человеческим ухом (частоты от 16 до 20 000 Гц).

8.1. ПРИРОДА ЗВУКА. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Звуковые колебания и волны - частный случай механических колебаний и волн. Однако в связи с важностью акустических понятий для оценки слуховых ощущений, а также в связи с медицинскими приложениями целесообразно некоторые вопросы разобрать специально. Принято различать следующие звуки:

1) тоны, или музыкальные звуки;

2) шумы;

3) звуковые удары.

Тоном называется звук, являющийся периодическим процессом. Если этот процесс гармонический, то тон называется простым или чистым, а соответствующая плоская звуковая волна описывается уравнением (7.45). Основной физической характеристикой чистого тона является частота. Ангармоническому 1 колебанию соответствует сложный тон. Простой тон издает, например, камертон, сложный тон создается музыкальными инструментами, аппаратом речи (гласные звуки) и т.п.

Сложный тон может быть разложен на простые. Наименьшая частота ν ο такого разложения соответствует основному тону, остальные гармоники (обертоны) имеют частоты, равные 2ν ο , 3ν ο и т.д. Набор частот с указанием их относительной интенсивности (амплитуды А) называется акустиче-

1 Ангармоническое - негармоническое колебание.

ским спектром (см. 6.4). Спектр сложного тона линейчатый; на рис. 8.1 показаны акустические спектры одной и той же ноты (ν 0 = 100 Гц), взятой на рояле (а) и кларнете (б). Таким образом, акустический спектр - важная физическая характеристика сложного тона.

Шумом называют звук, отличающийся сложной неповторяющейся временной зависимостью.

Рис. 8.1

К шуму относятся звуки от вибрации машин, аплодисменты, шум пламени горелки, шорох, скрип, согласные звуки речи и т.п.

Шум можно рассматривать как сочетание беспорядочно изменяющихся сложных тонов. Если попытаться с некоторой степенью условности разложить шум в спектр, то окажется, что этот спектр будет сплошным, например спектр, полученный от шума горения бунзе-новской газовой горелки (рис. 8.2).

Звуковой удар - это кратковременное звуковое воздействие: хлопок, взрыв и т.п. Не следует путать звуковой удар с ударной волной (см. 7.10).


1 Строго говоря, в этой формуле под р следует понимать среднюю амплитуду звукового давления.

8.2. ХАРАКТЕРИСТИКИ СЛУХОВОГО ОЩУЩЕНИЯ. ЗВУКОВЫЕ ИЗМЕРЕНИЯ

В 8.1 рассматривались объективные характеристики звука, которые могли быть оценены соответствующими приборами независимо от человека. Однако звук является объектом слуховых ощущений, поэтому оценивается человеком субъективно.

Воспринимая тоны, человек различает их по высоте.

Высота - субъективная характеристика, обусловленная прежде всего частотой основного тона.

В значительно меньшей степени высота зависит от сложности тона и его интенсивности: звук большей интенсивности воспринимается как звук более низкого тона.

Тембр звука почти исключительно определяется спектральным составом.

На рис. 8.1 разные акустические спектры соответствуют разному тембру, хотя основной тон и, следовательно, высота тона одинаковы.

Громкость - еще одна субъективная оценка звука, которая характеризует уровень слухового ощущения.

Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников.

В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера: если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Применительно к звуку это означает, что если интенсивность звука принимает ряд последовательных значений, например а1 0 , а 2 1 0 , а 3 1 0 (а - некоторый коэффициент, а >1) и т.д., то соответствующие им ощущения громкости звука Е 0 , 2Е 0 , 3E 0 и т.д.

Математически это означает, что громкость звука пропорциональна логарифму интенсивности звука.

Если действуют два звуковых раздражения с интенсивностями I и I 0 , причем I 0 - порог слышимости, то на основании закона Вебера- Фехнера громкость относительно него связана с интенсивностями следующим образом:

E = klg(I / I,), (8.3)

где k - некоторый коэффициент пропорциональности, зависящий от частоты и интенсивности.

Если бы коэффициент k был постоянным, то из (8.1) и (8.3) следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале громкостей. В этом случае громкость звука, так же как и интенсивность, выражалась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы (8.3).

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают, т.е. k = 1 и E b = lg(I/I 0), или, по аналогии с (8.2):

Е ф = 10 lg(I/l0). (8.4)

Для отличия от шкалы интенсивности звука в шкале громкости децибелы называют фонами (фон).

Громкость на других частотах можно измерить, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого с помощью звукового гене-ратора 1 создают звук частотой 1 кГц. Изменяют интенсивность звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, равна громкости этого звука в фонах.

Для того чтобы найти соответствие между громкостью и интенсивностью звука на разных частотах, пользуются кривыми равной громкости (рис. 8.4). Эти кривые построены на основании средних данных, которые были получены у людей с нормальным слухом при измерениях, проводимых по описанному выше методу.

Нижняя кривая соответствует интенсивностям самых слабых слышимых звуков - порогу слышимости; для всех частот Еф = 0, для 1 кГц интенсивность звука I 0 = 1 пВт/м 2 . Из приведенных кривых видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500- 3000 Гц. Каждая промежуточная кривая соответствует одинаковой громкости, но разной интенсивности звука для разных частот. По отдельной кривой, равной громкости, можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости. Используя совокупность кривых равной громкости, можно найти для разных

1 Звуковым генератором называют электронный прибор, генерирующий электрические колебания с частотами звукового диапазона. Однако сам звуковой генератор не является источником звука. Если же создаваемое им колебание подать на динамик, то возникает звук, тональность которого соответствует частоте генератора. В звуковом генераторе предусмотрена возможность плавного изменения амплитуды и частоты колебаний.

частот громкости, соответствующие определенной интенсивности. Например, пусть интенсивность звука частотой 100 Гц равна 60 дБ. Какова громкость этого звука? На рис. 8.2 находим точку с координатами 100 Гц, 60 дБ. Она лежит на кривой, соответствующей уровню громкости 30 фон, что и является ответом.

Чтобы иметь определенные представления о различных по характеру звуках, приведем их физические характеристики (табл. 8.1).

Таблица 8.1

Метод измерения остроты слуха называют аудиометрией. При аудио-метрии на специальном приборе (аудиометре) определяют порог слухового ощущения на разных частотах; полученная кривая называется ау-диограммой. Сравнение аудиограммы больного человека с нормальной кривой порога слухового ощущения помогает диагностировать заболевание органов слуха.

Для объективного измерения уровня громкости шума используется шумомер. Структурно он соответствует схеме, изображенной на рис. 8.3. Свойства шумомера приближаются к свойствам человеческого уха (см. кривые равной громкости на рис. 8.4), для этого для разных диапазонов уровней громкости используются корректирующие электрические фильтры.

8.3. ФИЗИЧЕСКИЕ ОСНОВЫ ЗВУКОВЫХ МЕТОДОВ ИССЛЕДОВАНИЯ В КЛИНИКЕ

Звук, как и свет, является источником информации, и в этом главное его значение.

Звуки природы, речь окружающих нас людей, шум работающих машин многое сообщают нам. Чтобы представить значение звука для человека, достаточно временно лишить себя возможности воспринимать звук - закрыть уши.

Естественно, звук может быть и источником информации о состоянии внутренних органов человека. Распространенный звуковой метод

диагностики заболеваний - аускультация (выслушивание) - известен еще со II в. до н.э. Для аускультации используют стетоскоп или фонендоскоп. Фонендоскоп (рис. 8.5) состоит из полой капсулы 1 с передающей звук мембраной 2, прикладываемой к телу больного, от нее идут резиновые трубки 3 к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается ау-скультация.

При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка и кишечника, прослушать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями с учебной целью или при консилиуме используют систему, в которую входят микрофон, усилитель и громкоговоритель или несколько телефонов.

Для диагностики состояния сердечной деятельности применяется метод, подобный аускультации и называемый фонокардиографией (ФКГ). Этот метод заключается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Запись фонокардио-граммы производят с помощью фонокардиографа (рис. 8.6), состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства. На рис. 8.7 показана нормальная фонокардиограмма.

Принципиально отличным от двух изложенных выше звуковых методов является перкуссия. В этом методе выслушивают звучание отдельных частей тела при простукивании их.


Представим замкнутую полость, заполненную воздухом внутри какого-нибудь тела. Если вызвать в этом теле звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, выделяя и усиливая тон, соответствующий размеру и положению полости.

Схематично тело человека можно представить как совокупность газонаполненных (легких), жидких (внутренние органы) и твердых (кость) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы. Опытный врач по тону перкуторных звуков определяет состояние и топографию внутренних органов.

8.4. ВОЛНОВОЕ СОПРОТИВЛЕНИЕ. ОТРАЖЕНИЕ ЗВУКОВЫХ ВОЛН. РЕВЕРБЕРАЦИЯ

Звуковое давление р зависит от скорости υ колеблющихся частиц среды. Вычисления показывают, что


Таблица 8.2

Используем (8.8) для вычисления коэффициента проникновения звуковой волны из воздуха в бетон и в воду:

Эти данные производят впечатление: оказывается, только очень малая часть энергии звуковой волны проходит из воздуха в бетон и в воду. Во всяком закрытом помещении отраженный от стен, потолков, мебели звук падает на другие стены, полы и пр., вновь отражается и поглощается и постепенно угасает. Поэтому даже после того, как источник звука прекратит действие, в помещении все еще остаются звуковые волны, которые создают гул. Особенно это заметно в больших просторных залах. Процесс постепенного затухания звука в закрытых помещениях после выключения источника называют реверберацией.

Реверберация, с одной стороны, полезна, так как восприятие звука усиливается за счет энергии отраженной волны, но, с другой стороны, чрезмерно длительная реверберация может существенно ухудшить восприятие речи, музыки, так как каждая новая часть текста перекрывается предыдущими. В связи с этим обычно указывают некоторое оптимальное время реверберации, которое учитывается при постройке аудиторий, театральных и концертных залов и т.п. Например, время реверберации заполненного Колонного зала Дома Союзов в Москве равно 1,70 с, заполненного Большого театра - 1,55 с. Для этих помещений (пустых) время реверберации соответственно 4,55 и 2,06 с.

8.5. ФИЗИКА СЛУХА

Слуховая система связывает непосредственный приемник звуковой волны с головным мозгом.

Используя понятия кибернетики, можно сказать, что слуховая система получает, перерабатывает и передает информацию. Из всей слуховой системы для рассмотрения физики слуха выделим наружное, среднее и внутреннее ухо.

Наружное ухо состоит из ушной раковины 1 и наружного слухового прохода 2 (рис. 8.8).


Рис. 8.9

Ушная раковина у человека не играет существенной роли для слуха. Она способствует определению локализации источника звука при его расположении в сагиттальной плоскости. Поясним это. Звук от источника попадает в ушную раковину. В зависимости от положения источника в вертикальной плоскости (рис. 8.9) звуковые волны будут по-разному дифрагировать на ушной раковине из-за ее специфической формы. Это приведет и к разному изменению спектрального состава звуковой волны, попадающей в слуховой проход (более детально вопросы дифракции рассматриваются в 24.6). Человек в результате опыта научился ассоциировать изменение спектра звуковой волны с направлением на источник звука (направления А, Б и В на рис. 8.9).

Обладая двумя звукоприемниками (ушами), человек и животные способны установить направление на источник звука и в горизонтальной плоскости (бинауральный эффект; рис. 8.10). Это объясняется тем, что звук от источника до разных ушей проходит разное расстояние и возникает разность фаз для волн, попадающих в правую и левую ушные раковины. Связь между разностью этих расстояний (δ) и разностью фаз (Δφ) выведена в 24.1 при объяснении интерференции света [см. (24.9)]. Если источник звука находится прямо перед лицом человека, то δ = 0 и Δφ = 0, если источник звука расположен сбоку против одной из ушных раковин, то в другую ушную раковину он попадет с запаздыванием. Будем считать приближенно, что в этом случае δ равно расстоянию между ушными раковинами. По формуле (24.9) можно рассчитать для ν = 1 кГц и δ = 0,15 м разность фаз. Она приблизительно равна 180°.

Различным направлениям на источник звука в горизонтальной плоскости будут соответствовать разности фаз между 0° и 180° (для приведенных выше данных). Считают, что человек с нормальным слухом может фиксировать направления на источник звука с точностью до 3°, этому соответствует разность фаз 6°. Поэтому можно полагать, что чело-

Рис. 8.10

век способен различать изменение разности фаз звуковых волн, попадающих в его уши, с точностью до 6°.

Кроме фазового различия бинауральному эффекту способствует неодинаковость интенсивностей звука у разных ушей, а также акустическая тень от головы для одного уха. На рис. 8.10 схематично показано, что звук от источника попадает в левое ухо в результате дифракции.

Звуковая волна проходит через слуховой проход и частично отражается от барабанной перепонки 3. В результате интерференции падающей и отраженной волн может возникнуть акустический резонанс. Это возникает тогда, когда длина волны в четыре раза больше длины наружного слухового прохода. Длина слухового прохода у человека приблизительно равна 2,3 см; следовательно, акустический резонанс возникает при частоте:

Наиболее существенной частью среднего уха являются барабанная перепонка 3 и слуховые косточки: молоточек 4, наковальня 5 и стремечко 6 с соответствующими мышцами, сухожилиями и связками. Косточки осуществляют передачу механических колебаний от воздушной среды наружного уха к жидкой среде внутреннего. Жидкая среда внутреннего уха имеет волновое сопротивление, приблизительно равное волновому сопротивлению воды. Как было показано (см. 8.4), при прямом переходе звуковой волны из воздуха в воду передается лишь 0,122% падающей интенсивности. Это слишком мало. Поэтому основное назначение среднего уха - способствовать передаче внутреннему уху большей интенсивности звука. Используя технический язык, можно сказать, что среднее ухо согласует волновые сопротивления воздуха и жидкости внутреннего уха.

Система косточек на одном конце молоточком связана с барабанной перепонкой (площадь S 1 = 64 мм 2), на другом - стремечком - с овальным окном 7 внутреннего уха (площадь S 2 = 3 мм 2).

На барабанную перепонку действует звуковое давление р 1 , что обусловливает силу

на 8, называется вестибулярной лестницей. Другой канал идет от круглого окна 9, он называется барабанной лестницей 10. Вестибулярная и барабанная лестницы соединены в области купола улитки посредством маленького отверстия - геликотремы 11. Таким образом, оба эти канала в некотором роде представляют единую систему, наполненную пери-лимфой. Колебания стремечка 6 передаются мембране овального окна 7, от нее перилимфе и «выпячивают» мембрану круглого окна 9. Пространство между вестибулярной и барабанной лестницами называется улитковым каналом 12, он заполнен эндолимфой. Между улитковым каналом и барабанной лестницей вдоль улитки проходит основная (базилярная) мембрана 13. На ней находится кортиев орган, содержащий рецептор-ные (волосковые) клетки, от улитки идет слуховой нерв (на рис. 8.9 эти подробности не показаны).

Кортиев орган (спиральный орган) преобразует механические колебания в электрический сигнал.

Длина основной мембраны около 32 мм, она расширяется и утончается в направлении от овального окна на верхушке улитки (от ширины 0,1 до 0,5 мм). Основная мембрана - весьма интересная для физики структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который представлял основную мембрану аналогично ряду настроенных струн пианино. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонаторной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна распространится волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространится приблизительно до 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм.

На основании этих наблюдений были разработаны теории, согласно которым восприятие высоты тона определяется положением максимума колебания основной мембраны. Таким образом, во внутреннем ухе прослеживается определенная функциональная цепь: колебание мембраны овального окна - колебание перилимфы - сложные колебания основной мембраны - раздражение волосковых клеток (рецепторы кортиева органа) - генерация электрического сигнала.

Некоторые формы глухоты связаны с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сиг-

налы при воздействии механических колебаний. Таким глухим можно помочь, для этого необходимо имплантировать электроды в улитку и на них подавать электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула.

Такое протезирование основной функции улитки (кохлеарное протезирование) разрабатывается в ряде стран. В России кохлеарное протезирование разработано и осуществлено в Российском медицинском университете. Кохлеарный протез показан на рис. 8.12, здесь 1 - основной корпус, 2 - заушина с микрофоном, 3 - вилка электрического разъема для подсоединения к имплантируемым электродам.

8.6. УЛЬТРАЗВУК И БГО ПРИМЕНЕНИЯ В МЕДИЦИНЕ

Ультразвуком (УЗ) называют механические колебания и волны, частоты которых более 20 кГц.

Верхним пределом ультразвуковых частот условно можно считать 10 9 -10 10 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния вещества, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. 14.7). Обратный пьезоэффект заключа-

ется в механической деформации тел под действием электрического поля. Основной частью такого излучателя (рис. 8.13, а) является пластина или стержень 1 из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титаната бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряжение от генератора 3, то пластина благодаря обратному пье-зоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. 7.6). Так, для пластин толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли - 1,5 МГц и титаната бария - 2,75 МГц.

Приемник УЗ можно создать на основе пьезоэлектрического эффекта (прямой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 8.13, б), которая при пьезоэффекте приводит к генерации переменного электрического поля; соответствующее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмотрим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуковой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. 24.5) существенно зависит от соотношения длины волн и размеров тел, на которых волна дифрагирует. «Непрозрачное» тело размером 1 м не будет препятствием для звуковой длины с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм, возникнет УЗ-тень. Это позволяет в некоторых случаях не учитывать дифракцию УЗ-волн, рассматривая при преломлении и отражении эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. 8.4). Так, УЗ хорошо отражается на границах мышца-надкостница-кость, на поверхности полых органов и т.д.

Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т.п. (УЗ-локация). При УЗ-локации используют как непрерывное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультразвука до исследуемого объекта и обратно. Зная скорость распространения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за тонкого слоя воздуха между излучателем и биологическим объектом (см. 8.4). Чтобы исключить воздушный слой, поверхность УЗ-излу-чателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглощение существенно зависят от состояния среды; на этом основано использование ультразвука для изучения молекулярных свойств вещества. Исследования такого рода являются предметом молекулярной акустики.

Как видно из (7.53), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значительной интенсивности даже при сравнительно небольшой амплитуде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (7.12)], что говорит о наличии существенных сил, действующих на частицы в биологических тканях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости - кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, происходят разогревание вещества, а также ионизация и диссоциация молекул.

Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты:

Микровибрации на клеточном и субклеточном уровнях;

Разрушение биомакромолекул;

Перестройку и повреждение биологических мембран, изменение проницаемости мембран (см. гл. 13);

Тепловое действие;

Медико-биологические приложения ультразвука в основном можно разделить на два направления: методы диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы и использование импульсного излучения. Это эхоэнцефалография - определение опухолей и отека головного мозга (на рис. 8.14 показан эхоэнцефалограф «Эхо-12»); ультразвуковая кардиография - измерение размеров сердца в динамике; в офтальмологии - ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта Доплера изучают характер движения сердечных клапанов и измеряют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физиотерапия. На рис. 8.15 показан используемый для этих целей аппарат УТП-ЗМ. На пациента воздействуют ультразвуком с помощью специальной излу-чательной головки аппарата. Обычно для терапевтических целей применяют ультразвук частотой 800 кГц, средняя его интенсивность около 1 Вт/см 2 и меньше.

Первичным механизмом ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жидкость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарственных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» поврежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы используется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ориентир» можно обнаружить предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биологических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, например, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. гл. 24).

8.7. ИНФРАЗВУК

Инфразвуком называют механические (упругие) волны с частотами, меньшими тех, которые воспринимает ухо челвоека (20 Гц).

Источниками инфразвука могут быть как естественные объекты (море, землетрясение, грозовые разряды и др.), так и искусственные (взрывы, автомашины, станки и др.).

Инфразвук часто сопровождается слышимым шумом, например в автомашине, поэтому возникают трудности при измерении и исследовании собственно инфразвуковых колебаний.

Для инфразвука характерно слабое поглощение разными средами, поэтому он распространяется на значительное расстояние. Это позволяет по распространению инфразвука в земной коре обнаруживать взрыв на большом удалении его от источника, по измеренным инфра-звуковым волнам прогнозировать цунами и т.д. Так как длина волны инфразвука больше, чем у слышимых звуков, то инфразвуковые волны лучше дифрагируют и проникают в помещения, обходя преграды.

Инфразвук оказывает неблагоприятное влияние на функциональное состояние ряда систем организма: усталость, головная боль, сонливость, раздражение и др. Предполагается, что первичный механизм действия инфразвука на организм имеет резонансную природу. Резонанс наступает при близких значениях частоты вынуждающей силы и частоты собственных колебаний (см. 7.6). Частота собственных колебаний тела человека в положении лежа (3-4 Гц), стоя (5-12 Гц), частота собственных колебаний грудной клетки (5-8 Гц), брюшной полости (3-4 Гц) и т.д. соответствуют частоте инфразвуков.

Снижение уровня интенсивности инфразвуков в жилых, производственных и транспортных помещениях - одна из задач гигиены.

8.8. ВИБРАЦИИ

В технике механические колебания различных конструкций и машин получили название вибраций.

Они оказывают воздействие и на человека, который соприкасается с вибрирующими объектами. Это воздействие может быть как вредным и приводящим в определенных условиях к вибрационной болезни, так и полезным, лечебным (вибротерапия и вибромассаж).

Основные физические характеристики вибраций совпадают с характеристиками механических колебаний тел, это:

Частота колебаний или гармонический спектр ангармонического колебания;

Амплитуда, амплитуда скорости и амплитуда ускорения;

Энергия и средняя мощность колебаний.

Кроме того, для понимания действия вибраций на биологический объект важно представлять себе распространение и затухание колебаний в теле. При исследовании этого вопроса используют модели, состоящие из инерционных масс, упругих и вязких элементов (см. 10.3).

Вибрации являются источником слышимых звуков, ультразвуков и инфразвуков.

I. Предмет физики. Ее задачи. Звук, его характеристики.

Физика - наука о свойствах и формах существования материи.

Биофизика - медико-биодогическая наука, изучающая физические процессы и явления в живых системах, в том числе при различных внешних воздействиях.

Цели и задачи курса медицинской и биологической физики:

    Познакомиться с физическими и биофизическими механизмами, происходящими в тканях, органах и системах организма.

    Изучить физические и биофизические характеристики органов и тканей и физические принципы их работы.

    Познакомиться с физической основой методов диагностики и лечения.

    Познакомиться с физической основой методов работы медицинской аппаратуры.

    Изучить влияние внешних факторов на организм.

Особенности современной физики.

а) Современная физика имеет пограничные области с другими науками.

б) Физика разделена на ряд узких областей по разным признакам:

    по объему исследования;

    по предметам исследования.

Роль физики для других наук возрастает, она дает им теории, принципы, системы единиц, результаты экспериментов, создает основу для конструирования медицинской аппаратуры, объясняет различные физико-биологические процессы.

Особенности биофизики:

    Является пограничной наукой.

    Имеет узкие области:

    общие и частные;

    теоретические, экспериментальные и прикладные;

    изучает биофизику растений, животных и человека;

    квантовая биофизика;

    молекулярная, клеточная, биофизика тканей, органов, систем, популяций.

Звук, его характеристика.

Акустика - это наука о получении, распространении и свойствах механических волн и взаимодействии этих волн с физическими и биофизическими объектами.

Виды акустики:

    Техническая - исследует получение и распределение звука, разрабатывает методы звуковых исследований.

    Архитектурная - исследует вопросы получения хорошей слышимости или зашиты помещений (например, от шумов).

    Биологическая - исследует получение и применение звука живыми организмами.

    Медицинская - исследует физику и биофизику слуха и речи, возможности применения звука для диагностики и лечения. При этом следует различать применение слышимого звука и ультразвука.

Основные задачи медицинской акустики :

    разработка гигиенических норм использования звука в науке и промышленности;

    разработка звуковых методов диагностики и лечения;

    разработка ультразвуковых методов диагностики и лечения.

Звук как физическое явление.

Звук - разновидность механических колебаний, распространяемых в упругих средах преимущественно в виде продольных волн. В вакууме звук не распространяется.

Звуковая волна - механическое возмущение, распространяемое в упругой среде.

Звуковые колебания - механические колебания условных частиц среды.

Условные частицы - объемы среды, которые достаточно малы по сравнению с длинной волны.

Звуковое поле - часть пространства, в котором распространяется звуковая волна.

Классификация звуковых волн:

1. По частоте

    инфразвук (v < 16Гц)

    слышимый звук (16Гц < v < 20000Гц)

    ультразвук (20000Гц < v <100МГц)

    гиперзвук (v > 100МГц)

(все границы условны)

Инфразвук, ультразвук и гиперзвук не воспринимаются слуховым анализатором.

    По направлению смещения частиц среды :

    Продольные - волны, у которых колебания частиц среды происходят вдоль направления распространения волны.

    Поперечные - волны, в которых колебания частиц среды происходят в направлении, перпендикулярном направлению распространения волны.

В жидкостях и газах упругие силы возникают только при изменении объема, в них образуются только продольные волны.

В твердых телах упругие силы возникают как при изменении объема, так и при изменении формы, в них образуются как продольные, так и поперечные волны, причем скорость продольных волн больше скорости поперечных волн примерно в половину.

3. По форме колебаний:



Гармонический спектр

Их особенностью является то, что их можно представить математически и графически в виде суммы конечного или бесконечного числа простых по частоте синусоид, колеблющихся с равной амплитудой.